4.7 Article Proceedings Paper

A robust, particle size independent, method for quantifying metal(loid oxide) nanoparticles and their agglomerates in complex environmental matrices by electrothermal vaporisation coupled to ICP-MS

期刊

JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY
卷 26, 期 2, 页码 450-455

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c0ja00149j

关键词

-

向作者/读者索取更多资源

The demand to quantify the elemental composition of very small sample amounts and/or of samples which form artefacts during conventional sample preparations is increasing. Example applications are the quantification of engineered metal(loid) based nanomaterials in environmental samples, e. g. (i) the direct analyses of engineered nanoparticle (ENP) suspensions showing broad particle size distributions which are not suitable to be applied via the spray chamber in ICP-MS analyses, (ii) measurements of single invertebrates and tissue of selected organs which were exposed to ENPs, and (iii) whole plants or plant parts e. g. from Lemna sp. The use of imaging based high resolution methods like atomic force microscopy or environmental scanning electron microscopy creates the need to quantify the elemental composition of the visualised objects as directly and exactly as possible, at very low limits of detection. With this study the authors present a method/concept for the multi-element quantification of analytes from ENPs in complex matrices with different degrees of complexity by graphite furnace electrothermal vaporisation coupled to inductively coupled plasma quadrupole mass spectrometry equipped with collision/reaction cell (GF-ETV-ICP-QMS).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据