4.7 Article

Pyrolysis temperature-dependent release of dissolved organic carbon from plant, manure, and biorefinery wastes

期刊

出版社

ELSEVIER
DOI: 10.1016/j.jaap.2013.09.003

关键词

Charcoal; Volatile matter; Biomass; Thermochemical conversion; Bioenergy

向作者/读者索取更多资源

Limited information is available to understand the chemical structure of biochar's labile dissolved organic carbon (DOC) fraction that will alter soil organic carbon (SOC) composition. This study utilized the high sensitivity of fluorescence excitation-emission (EEM) spectrophotometry to understand the structural changes in biochar-derived DOC as a function of (1) chemical property of feedstock and (2) pyrolysis temperature (350-800 degrees C). Regardless of feedstock (almond shell, broiler litter, lignin, cottonseed hull, and pecan shell), low temperature (350-400 degrees C) pyrolysis shifted EEM of hot water (80 degrees C for 16h) extracts toward longer emission wavelengths, higher aromaticity regions. Five component parallel factor (PARAFAC) modeling of EEM afforded: (Cl) (poly)phenolic pyrolysis products and other water-soluble aromatic structures similar to fulvic-like SOC; (C2-C3) aromatic structures similar to humic-like SOC having low water solubility that decomposed above 350 degrees C; (C4) carboxyl and other transient thermochemical conversion intermediates that decomposed above 500 degrees C; and (C5) thermally stable DOC fraction of lignin-rich biomass (pecan shell and lignin). Relative contribution of fulvic-like component exceeded that of humic-like components, and increased as a function of pyrolysis temperature. The C4 showed disproportionately high contributions to 500 degrees C broiler litter and cottonseed hull biochars. The carboxyl-enriched DOC of biochars pyrolyzed at 350-500 degrees C can have diverse environmental consequences, including the mobilization of heavy metals. Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据