4.5 Article

Restoration of Lipoxin A4 Signaling Reduces Alzheimer's Disease-Like Pathology in the 3xTg-AD Mouse Model

期刊

JOURNAL OF ALZHEIMERS DISEASE
卷 43, 期 3, 页码 893-903

出版社

IOS PRESS
DOI: 10.3233/JAD-141335

关键词

Aging; Alzheimer's disease; aspirin-triggered lipoxin A(4); inflammation; lipoxin; lipoxygenase; resolution; 3xTg-AD

资金

  1. UCI Undergraduate Research Opportunities Program (HCD)
  2. UCI Alzheimer's Disease Research Center through from an NIH/NIA [P50 AG16573, AG00538]
  3. Alzheimer's Association [IIRG-11-204835]

向作者/读者索取更多资源

The initiation of an inflammatory response is critical to the survival of an organism. However, when inflammation fails to reach resolution, a chronic inflammatory state may occur, potentially leading to bystander tissue damage. Accumulating evidence suggests that chronic inflammation contributes to the progression of Alzheimer's disease (AD), and identifying mechanisms to resolve the pro-inflammatory environment stimulated by AD pathology remains an area of active investigation. Previously, we found that treatment with the pro-resolving mediator aspirin-triggered lipoxin A(4) (ATL), improved cognition, reduced A beta levels, and enhanced microglia phagocytic activity in Tg2576 transgenic AD mice. Here, we evaluated the effect of aging on brain lipoxin A4 (LXA(4)) levels using non-transgenic and 3xTg-AD mice. Additionally, we investigated the effect of ATL treatment on tau pathology in 3xTg-AD mice. We found that LXA4 levels are reduced with age, a pattern significantly more impacted in 3xTg-AD mice. Moreover, ATL delivery enhanced the cognitive performance of 3xTg-AD mice and reduced A beta levels, as well as decreased the levels of phosphorylated-tau (p-tau). The decrease in p-tau was due in part to an inhibition of the tau kinases GSK-3 beta and p38 MAPK. In addition, microglial and astrocyte reactivity was inhibited by ATL treatment. Our results suggest that the inability to resolve the immune response during aging might be an important feature that contributes to AD pathology and cognitive deficits. Furthermore, we demonstrate that activation of LXA4 signaling could serve as a potential therapeutic target for AD-related inflammation and cognitive dysfunction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据