4.5 Review

Slow Excitotoxicity in Alzheimer's Disease

期刊

JOURNAL OF ALZHEIMERS DISEASE
卷 35, 期 4, 页码 643-668

出版社

IOS PRESS
DOI: 10.3233/JAD-121990

关键词

Alzheimer's disease; amyloid-beta peptide; tau; excitotoxicity; insulin resistance; phospholipase A(2); cholesterd oxidation products; iron; memantine

资金

  1. National Medical Research Council of Singapore
  2. National Health and Medical Research Council of Australia

向作者/读者索取更多资源

Progress is being made in identifying possible pathogenic factors and novel genes in the development of Alzheimer's disease (AD). Many of these could contribute to 'slow excitotoxicity', defined as neuronal loss due to overexcitation as a consequence of decreased energy production due, for instance, to changes in insulin receptor signaling; or receptor abnormalities, such as tau-induced alterations in N-methyl-D-aspartate (NMDA) receptor phosphorylation. As a result, glutamate becomes neurotoxic at concentrations that normally show no toxicity. In AD, NMDA receptors are overexcited by glutamate in a tonic, rather than a phasic manner. Moreover, in prodromal AD subjects, functional MRI reveals an increase in neural network activities relative to baseline, rather than loss of activity. This may be an attempt to compensate for reduced number of neurons, or reflect ongoing slow excitotoxicity. This article reviews possible links between AD pathogenic factors such as A beta PP/A beta and tau; novel risk genes including clusterin, phosphatidylinositol-binding clathrin assembly protein, complement receptor 1, bridging integrator 1, ATP-binding cassette transporter 7, membrane-spanning 4-domains subfamily A, CD2-associated protein, sialic acid-binding immunoglobulin-like lectin, and ephrin receptor A1; metabolic changes including insulin resistance and hypercholesterolemia; lipid changes including alterations in brain phospholipids, cholesterol and ceramides; glial changes affecting microglia and astrocytes; alterations in brain iron metallome and oxidative stress; and slow excitotoxicity. Better understanding of the possible molecular links between pathogenic factors and slow excitotoxicity could inform our understanding of the disease, and pave the way towards new therapeutic strategies for AD.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据