4.5 Article

Prevalent Iron Metabolism Gene Variants Associated with Increased Brain Ferritin Iron in Healthy Older Men

期刊

JOURNAL OF ALZHEIMERS DISEASE
卷 20, 期 1, 页码 333-341

出版社

IOS PRESS
DOI: 10.3233/JAD-2010-1368

关键词

Alpha synuclein; amyloid; basal ganglia; chelation; dementia; diet; free radicals; gene; gray matter; iron; Lewy body; metal; myelin; oligodendrocytes; prevention; risk; tau; treatment

资金

  1. NIH [MH 0266029, AG027342, MH51928]
  2. Department of Veterans Affairs
  3. RCS Alzheimer's Foundation
  4. George M Leader Family
  5. NATIONAL INSTITUTE OF MENTAL HEALTH [R01MH066029, R03MH051928] Funding Source: NIH RePORTER
  6. NATIONAL INSTITUTE ON AGING [R01AG027342] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Prevalent gene variants involved in iron metabolism [hemochromatosis (HFE) H63D and transferrin C2 (TfC2)] have been associated with higher risk and earlier age at onset of Alzheimer's disease (AD), especially in men. Brain iron increases with age, is higher in men, and is abnormally elevated in several neurodegenerative diseases, including AD and Parkinson's disease, where it has been reported to contribute to younger age at onset in men. The effects of the common genetic variants (HFE H63D and/or TfC2) on brain iron were studied across eight brain regions (caudate, putamen, globus pallidus, thalamus, hippocampus, white matter of frontal lobe, genu, and splenium of corpus callosum) in 66 healthy adults (35 men, 31 women) aged 55 to 76. The iron content of ferritin molecules ( ferritin iron) in the brain was measured with MRI utilizing the Field Dependent Relaxation Rate Increase (FDRI) method. 47% of the sample carried neither genetic variant (IRON-) and 53% carried one and/or the other (IRON+). IRON+ men had significantly higher FDRI compared to IRON- men (p = 0.013). This genotype effect was not observed in women who, as expected, had lower FDRI than men. This is the first published evidence that these highly prevalent genetic variants in iron metabolism genes can influence brain iron levels in men. Clinical phenomena such as differential gender-associated risks of developing neurodegenerative diseases and age at onset may be associated with interactions between iron genes and brain iron accumulation. Clarifying mechanisms of brain iron accumulation may help identify novel interventions for age-related neurodegenerative diseases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据