4.8 Article

A frogspawn-inspired hierarchical porous NaTi2(PO4)3-C array for high-rate and long-life aqueous rechargeable sodium batteries

期刊

NANOSCALE
卷 7, 期 44, 页码 18552-18560

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5nr06505d

关键词

-

资金

  1. Natural Science Funds for Distinguished Young Scholar of Heilongjiang Province [JC2015001]
  2. Program for New Century Excellent Talents in Heilongjiang Provincial University [1253-NCET-012]
  3. Natural Science Foundation of Heilongjiang Province [QC2013C008]

向作者/读者索取更多资源

Hollow micro/nano-arrays have attracted tremendous attention in the field of energy conversion and storage, but such structures usually compromise the volumetric energy density of the electrode materials. Frogspawn consists of a spawn core and a transparent jelly shell organized in a hierarchical porous array, which exhibits superior mechanical strength and high-efficiency oxygen permeability. It can be used as a model for designing a new high-performance electrode material, which has advantages such as a high surface area, fast mass transport and superior durability. Herein, we report a frogspawn-like NaTi2(PO4)(3)/C array prepared by a facile preform impregnation strategy. The framework is formed by a hollow carbon sphere connected by the NaTi2(PO4)(3)/C skeleton, and its hollow is filled with the NaTi2(PO4)(3) nano-spheres. The whole hierarchical porous three-dimensional array copies the structure of a frogspawn. This unique structure not only enables easy electrolyte percolation and fast electron/ion transport, but also enhances the reversible capacity and cycling durability. When it is applied as an anode of the aqueous sodium ion battery, it exhibits favorable high rate capability and superior cycling stability, and retains 89% of the initial capacity after two thousand cycles at 20 C. Moreover, the full cell using the frogspawn-inspired NaTi2(PO4)(3)-C as the anode and Na0.44MnO2 as the cathode is capable of ultralong cycling up to one thousand cycles at alternate 10 and 60 C, which is among the best of state-of-the-art aqueous sodium ion systems. Therefore, the frogspawn-inspired architecture provides a new strategy to the tailored design of polyanion materials for high-power applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据