4.7 Article

Microwave-assisted synthesis of hollow CuO-Cu2O nanosphere/graphene composite as anode for lithium-ion battery

期刊

JOURNAL OF ALLOYS AND COMPOUNDS
卷 615, 期 -, 页码 390-394

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2014.07.013

关键词

Nanostructured materials; Chemical synthesis; Anode material; Crystal structure; Lithium-ion battery

资金

  1. Program for New Century Excellent Talents in University of Ministry of Education of China [NCET-11-1081]

向作者/读者索取更多资源

CuO-Cu2O/graphene composite has been successfully prepared by the combination of a microwave-assisted process and subsequent annealing. X-ray diffraction and electron microscopy reveals that copper oxide nanospheres with a size of 120-200 nm are uniformly anchored on graphene nanosheets. The copper oxide nanospheres are composed of numerous CuO and Cu2O nanocrystals of similar to 10 nm. These nanospheres are hollow and the thickness of the shells is around 50-70 nm. The CuO-Cu2O/graphene composite shows a highly reversible capacity and excellent rate performance as anode for Li-ion battery. The reversible capacity of the composite retains 487 mA h g(-1) after 60 cycles at 200 mA g(-1). Even when cycled at various rate (200, 500, 1000, 2000, 5000 mA g(-1)) for 60 cycles, the capacity can recover to 520 mA h g(-1) at the current of 200 mA g(-1). The enhanced electrochemical performances are ascribed to the hollow spherical architectures, excellent conductivity of graphene sheets, and possible synergistic effects between CuO, Cu2O and graphene that enhance the intrinsic properties of each component. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据