4.8 Article

Measuring graphene adhesion using atomic force microscopy with a microsphere tip

期刊

NANOSCALE
卷 7, 期 24, 页码 10760-10766

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5nr02480c

关键词

-

资金

  1. National Science Foundation [CMMI-1129817]

向作者/读者索取更多资源

Van der Waals adhesion between graphene and various substrates has an important impact on the physical properties, device applications and nanomanufacturing processes of graphene. Here we report a general, high-throughput and reliable method that can measure adhesion energies between ultraflat graphene and a broad range of materials using atomic force microscopy with a microsphere tip. In our experiments, only van der Waals force between the tip and a graphene flake is measured. The Maugis-Dugdale theory is employed to convert the measured adhesion force using AFM to the adhesion energy. The ultraflatness of monolayer graphene on mica eliminates the effect of graphene surface roughness on the adhesion, while roughness of the microsphere tip is addressed by the modified Rumpf model. Adhesion energies of monolayer graphene to SiO2 and Cu are obtained as 0.46 and 0.75 J m(-2), respectively. This work provides valuable insight into the mechanism of graphene adhesion and can readily extend to the adhesion measurement for other 2D nanomaterials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据