4.7 Article

Fe:ZnSe semiconductor nanocrystals: Synthesis, surface capping, and optical properties

期刊

JOURNAL OF ALLOYS AND COMPOUNDS
卷 509, 期 7, 页码 3314-3318

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2010.12.046

关键词

Chemical synthesis; Nanostructured materials; Doping; Optical properties

资金

  1. National Natural Science Foundation of China [60890203, 60771016]

向作者/读者索取更多资源

Water-soluble Fe-doped ZnSe (Fe:ZnSe) nanocrystals (NCs) were synthesized by aqueous synthesis approach using thioglycolic acid (TGA) as capping agent. The undoped ZnSe and Fe:ZnSe NCs were well retained in the zinc blende structure, and the Fe dopants were well doped into the ZnSe NCs, as confirmed by X-ray photoelectron spectroscopy (XPS). The lattice constant of Fe:ZnSe NCs decreases slightly by the introduction of Fe, and Fe:ZnSe NCs exhibit a uniform size distribution with average grain size of similar to 5 nm. The thioglycolic acid (TGA) was successfully capped on the surface of Fe:ZnSe NCs, confirmed by Fourier-transform-infrared (FT-IR) spectroscopy. The absorption edges of pure ZnSe and Fe:ZnSe NCs are blue-shifted compared to that of corresponding bulk ZnSe, indicating the quantum confinement effect, and the absorption edge of Fe:ZnSe NCs shows a slightly red shift with respect to the pure ZnSe NCs. The as-prepared Fe:ZnSe NCs exhibits an emission peak at similar to 425 nm, and the photoluminescence (PL) intensity of the NCs has the maximum value when the Fe-doping concentration reaches 1.0 at%. It is of interest to note that the concentration quenching effect appears when the Fe-doping concentration is larger than 10.0 at%, and the underlying physical mechanisms were discussed. Crown Copyright (C) 2010 Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据