4.8 Article

Dirac point movement and topological phase transition in patterned graphene

期刊

NANOSCALE
卷 7, 期 8, 页码 3645-3650

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4nr06454b

关键词

-

资金

  1. DOE Early Career Award [DE-SC0006433]

向作者/读者索取更多资源

The honeycomb lattice of graphene is characterized by linear dispersion and pseudospin chirality of fermions on the Dirac cones. If lattice anisotropy is introduced, the Dirac cones stay intact but move in reciprocal space. Dirac point movement can lead to a topological transition from semimetal to semiconductor when two inequivalent Dirac points merge, an idea that has attracted significant research interest. However, such movement normally requires unrealistically high lattice anisotropy. Here we show that anisotropic defects can break the C-3 symmetry of graphene, leading to Dirac point drift in the Brillouin zone. Additionally, the long-range order in periodically patterned graphene can induce intervalley scattering between two inequivalent Dirac points, resulting in a semimetal-to-insulator topological phase transition. The magnitude and direction of Dirac point drift are predicted analytically, which are consistent with our first-principles electronic structure calculations. Thus, periodically patterned graphene can be used to study the fascinating physics associated with Dirac point movement and the corresponding phase transition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据