4.8 Article

A three-dimensional nitrogen-doped graphene structure: a highly efficient carrier of enzymes for biosensors

期刊

NANOSCALE
卷 7, 期 4, 页码 1290-1295

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4nr05325g

关键词

-

资金

  1. Natural Science Foundation of China [51322209]
  2. Sino-German Center for Research Promotion [GZ 871]
  3. Ministry of Education [20120141110030]
  4. Fundamental Research Funds for the Central Universities [2042014kf0244]

向作者/读者索取更多资源

In recent years, graphene-based enzyme biosensors have received considerable attention due to their excellent performance. Enormous efforts have been made to utilize graphene oxide and its derivatives as carriers of enzymes for biosensing. However, the performance of these sensors is limited by the drawbacks of graphene oxide such as slow electron transfer rate, low catalytic area and poor conductivity. Here, we report a new graphene-based enzyme carrier, i.e. a highly conductive 3D nitrogen-doped graphene structure (3D-NG) grown by chemical vapour deposition, for highly effective enzyme-based biosensors. Owing to the high conductivity, large porosity and tunable nitrogen-doping ratio, this kind of graphene framework shows outstanding electrical properties and a large surface area for enzyme loading and biocatalytic reactions. Using glucose oxidase (GOx) as a model enzyme and chitosan (CS) as an efficient molecular binder of the enzyme, our 3D-NG based biosensors show extremely high sensitivity for the sensing of glucose (226.24 mu A mM(-1) m(-2)), which is almost an order of magnitude higher than those reported in most of the previous studies. The stable adsorption and outstanding direct electrochemical behaviour of the enzyme on the nanocomposite indicate the promising application of this 3D enzyme carrier in high-performance electrochemical biosensors or biofuel cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据