4.8 Article

A comparative study of thermo-sensitive hydrogels with water-insoluble paclitaxel in molecule, nanocrystal and microcrystal dispersions

期刊

NANOSCALE
卷 7, 期 36, 页码 14838-14847

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5nr03623b

关键词

-

资金

  1. National Natural Science Foundation of China [81130059]
  2. National Basic Research Program of China (973 program) [2015CB932100]
  3. Key Project from the Ministry of Science and Technology [2014ZX09507-001-10]
  4. Innovation Team of the Ministry of Education [BMU20110263]

向作者/读者索取更多资源

In situ thermo-sensitive hydrogels have attracted increasing attention for alternative cancer therapies due to their long-term and effective drug levels at local sites. Besides synthesizing new thermo-sensitive polymers, we can also fabricate this delivery system by combining a hydrogel with a thermo-response and drug in a different dispersion state, such as drug nanocrystals. However, the impact of the drug dispersion state or dimension on the quality of such a local injectable system is still unknown. So, here we developed and compared three types of F127 hydrogel systems with either paclitaxel or the near infra-red probe DiR in molecules (MOs), nanocrystals (NCs) and microcrystals (MCs), respectively. With 120 nm rod-shape nanocrystals, the NCs-Gel achieved a high drug loading, moderate drug release rate and gel erosion in vitro and in vivo, medium intratumoral drug residue but the best anti-tumor efficacy in 4T1 tumor bearing BALB/c mice. With the free drug solubilized in 20 nm micelles of the gel, the MOs-Gel system demonstrated the least drug loading and the fastest drug release and gel erosion, leading to the least intratumoral residue as well as the lowest anti-tumor effect. Finally, when dispersed in micron-grade rod-shape drug crystals, the MCs-Gel exhibited a high drug loading but poor stability, precipitating in vitro and in vivo, the highest intratumoral residue but the least drug release, resulting in moderate tumor inhibition. In conclusion, this study clarifies the effect of the drug dispersion state and scale on the behavior of a thermo-sensitive hydrogel, indicating the advantage of the NCs-Gel system, and it provides a basis for the future design of the local delivery of hydrophobic anti-cancer agents.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据