4.6 Article

Toxicity of silica nanoparticles depends on size, dose, and cell type

期刊

出版社

ELSEVIER
DOI: 10.1016/j.nano.2015.03.004

关键词

Silica nanoparticles; Cellular uptake; Cytotoxicity; Oxidative stress

资金

  1. University of Illinois Center for Nanoscale Science and Technology (CNST)
  2. National Cancer Institute-funded Siteman Center for Cancer Nanotechnology Excellence at Illinois
  3. Trionix Research Laboratory, Inc.

向作者/读者索取更多资源

Monodisperse spherical silica nanoparticles (SNPs) with diameters of 20-200 nm were employed to study size, dose, and cell-type dependent cytotoxicity in A549 and HepG2 epithelial cells and NIH/3T3 fibroblasts. These uniform SNPs of precisely controlled sizes eliminated uncertainties arising from mixed sizes, and uniquely allowed the probing of effects entirely size-dependent. Cell viability, membrane disruption, oxidative stress, and cellular uptake were studied. The extent and mechanism of SNP cytotoxicity were found to be not only size and dose dependent, but also highly cell type dependent. Furthermore, the 60 nm SNPs exhibited highly unusual behavior in comparison to particles of other sizes tested, implying interesting possibilities for controlling cellular activities using nanoparticles. Specifically, the 60 nm SNPs were preferentially endocytosed by cells and, at high doses, caused a disproportionate decrease in cell viability. The present work may help elucidate certain contradictions among existing results on nanoparticle-induced cytotoxicity. From the Clinical Editor: Silica nanoparticles are being investigated in many research areas for their use in clinical applications. Nonetheless, the relationship between particle size and potential toxicity remains to be elucidated. In this article, the authors studied the biological effects of spherical SNPs with precise diameters between 20 and 200 nm on three different cell types and their results should provide more data on safety for better drug design. (C) 2015 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据