4.8 Article

Biological imaging without autofluorescence in the second near-infrared region

期刊

NANO RESEARCH
卷 8, 期 9, 页码 3027-3034

出版社

TSINGHUA UNIV PRESS
DOI: 10.1007/s12274-015-0808-9

关键词

fluorescence imaging; second near-infrared; nanotechnology; autofluorescence

资金

  1. Solar Photochemistry Program of the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences [DE-AC36-08GO28308]

向作者/读者索取更多资源

Fluorescence imaging is capable of acquiring anatomical and functional information with high spatial and temporal resolution. This imaging technique has been indispensable in biological research and disease detection/diagnosis. Imaging in the visible and to a lesser degree, in the near-infrared (NIR) regions below 900 nm, suffers from autofluorescence arising from endogenous fluorescent molecules in biological tissues. This autofluorescence interferes with fluorescent molecules of interest, causing a high background and low detection sensitivity. Here, we report that fluorescence imaging in the 1,500-1,700-nm region (termed NIR-IIb) under 808-nm excitation results in nearly zero tissue autofluorescence, allowing for background-free imaging of fluorescent species in otherwise notoriously autofluorescent biological tissues, including liver. Imaging of the intrinsic fluorescence of individual fluorophores, such as a single carbon nanotube, can be readily achieved with high sensitivity and without autofluorescence background in mouse liver within the 1,500-1,700-nm wavelength region.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据