4.8 Article

An ultra-sensitive dual-mode imaging system using metal-enhanced fluorescence in solid phantoms

期刊

NANO RESEARCH
卷 8, 期 12, 页码 3912-3921

出版社

TSINGHUA UNIV PRESS
DOI: 10.1007/s12274-015-0891-y

关键词

gold nanoparticles; biomolecular imaging; noninvasive detection; diffusion reflection; fluorescence lifetime imaging; metal-enhanced fluorescence

资金

  1. U.S. National Institutes of Health [AI087968, NIGMS R01GM117836]

向作者/读者索取更多资源

In this study, we developed a highly sensitive dual-mode imaging system using gold nanoparticles (GNPs) conjugated to various fluorophores in solid phantoms. The system consists of fluorescence-lifetime imaging microscopy (FLIM) for surface imaging, diffusion reflection (DR) for deep-tissue imaging (up to 1 cm), and metal-enhanced fluorescence (MEF). We detected quenching in the fluorescent intensity (FI) for the conjugation of both gold nanospheres (GNS) and gold nanorods (GNRs) to Fluorescein, which has an excitation peak at a wavelength shorter than the surface plasmon resonance (SPR) of both types of GNPs. Enhanced FI was detected in conjugation to Rhodamine B (RhB) and Sulforhodamine B (SRB), both with excitation peaks in the SPR regions of the GNPs. The enhanced FI was detected both in solution and in solid phantoms by the FLIM measurements. DR measurements detected the presence of GNRs within the solid phantoms by recording the dropped rates of light scattering in wavelengths corresponding to the absorption spectra of the GNRs. With the inclusion of MEF, this promising dual-mode imaging technique enables efficient and sensitive molecular and functional imaging.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据