4.8 Article

Targeted inductive heating of nanomagnets by a combination of alternating current (AC) and static magnetic fields

期刊

NANO RESEARCH
卷 8, 期 2, 页码 600-610

出版社

TSINGHUA UNIV PRESS
DOI: 10.1007/s12274-015-0729-7

关键词

hyperthermia; magnetic nanoparticles; static magnetic field; alternating magnetic field; MnZn ferrite

资金

  1. National Important Science Research Program of China [2011CB933503, 2013CB733800]
  2. National Natural Science Foundation of China [31170959, 61127002]
  3. Jiangsu Provincial Special Program of Medical Science [BL2013029]
  4. Jiangsu Provincial Technical Innovation Fund for Scientific and Technological Enterprises [BC2013011]

向作者/读者索取更多资源

The conversion of electromagnetic energy into heat by nanomagnets has the potential to be a powerful, non-invasive technique for cancer therapy by hyperthermia and hyperthermia-based drug release, while temperature controllability and targeted heating are challenges to developing applications of such magnetic inductive hyperthermia. This study was designed to control the hyperthermia position and area using a combination of alternating current (AC) and a static magnetic field. MnZn ferrite (MZF) nanoparticles which exhibited excellent hyperthermia properties were first prepared and characterized as an inductive heating mediator. We built model static magnetic fields simply using a pair of permanent magnets and studied the static magnetic field distributions by measurements and numerical simulations. The influence of the transverse static magnetic fields on hyperthermia properties was then investigated on MZF magnetic fluid, gel phantoms and SMMC-7721 cells in vitro. The results showed a static magnetic field can inhibit the temperature rise of MZF nanoparticles in an AC magnetic field. But in the uneven static magnetic field formed by a magnet pair with repelling poles face-to-face, the heating area can be restricted in a central low static field; meanwhile the side effects of hyperthermia can be reduced by a surrounding high static field. As a result we can position the hyperthermia area, protect the non-therapeutic area, and reduce the side effects just by using a well-designed combination of AC and static field.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据