4.5 Article Proceedings Paper

Aeroelastic Topology Optimization of Blade-Stiffened Panels

期刊

JOURNAL OF AIRCRAFT
卷 51, 期 3, 页码 938-944

出版社

AMER INST AERONAUTICS ASTRONAUTICS
DOI: 10.2514/1.C032500

关键词

-

向作者/读者索取更多资源

Metallic blade-stiffened panels are optimized for various eigenvalue metrics of interest to the aerospace community. This is done via solid isotropic material with penalization-based topology optimization: the stiffeners are discretized into finite elements, and each element is assigned a design variable, which may vary from 0 (void) to 1 (solid). A known issue with eigenvalue-based optimization is discontinuities due to mode switching, which may be avoided through a series of eigenvalue separation constraints, or (more challenging, but less restrictive) a bound method with mode tracking. Both methods are demonstrated to obtain optimal stiffener topologies for panel buckling, but only the former is used for aeroelastic panel-flutter problems. Satisfactory flutter optimal results are obtained, but the work concludes with a discussion of the challenges associated with the use of a bound method for aeroelastic problems, with specific complications posed by the advent of hump modes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据