4.8 Article

Solution Transformation of Cu2O into CuInS2 for Solar Water Splitting

期刊

NANO LETTERS
卷 15, 期 2, 页码 1395-1402

出版社

AMER CHEMICAL SOC
DOI: 10.1021/nl504746b

关键词

Solution transformation; Cu2O; CuInS2; solar water splitting

资金

  1. Europe's Fuel Cell and Hydrogen Joint Undertaking (FCH JU) [621252]
  2. Swiss Federal Office for Energy (PECHouse Competence Center) [SI/500090-02]
  3. FP7 Future and Emerging Technologies (FET) collaborative project PHOCS [309223]
  4. Singapore-Berkeley Research Initiative for Sustainable Energy (SinBeRISE) program

向作者/读者索取更多资源

Though Cu2O has demonstrated high performance as a photocathode for solar water splitting, its band gap is too large for efficient use as the bottom cell in tandem configurations. Accordingly, copper chalcopyrites have recently attracted much attention for solar water splitting due to their smaller and tunable band gaps. However, their fabrication is mainly based on vacuum evaporation, which is an expensive and energy consuming process. Here, we have developed a novel and low-cost solution fabrication method, and CuInS2 was chosen as a model material due to its smaller band gap compared to Cu2O and relatively simple composition. The nanostructured CuInS2 electrodes were synthesized at low temperature in crystalline form by solvothermal treatment of electrochemically deposited Cu2O films. Following the coating of overlayers and decoration with Pt catalyst, the as-fabricated CuInS2 electrode demonstrated water splitting photocurrents of 3.5 mA cm(2) under simulated solar illumination. To the best of our knowledge, this is the highest performance yet reported for a solution-processed copper chalcopyrite electrode for solar water splitting. Furthermore, the electrode showed good stability and had a broad incident photon-to-current efficiency (IPCE) response to wavelengths beyond 800 nm, consistent with the smaller bandgap of this material.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据