4.5 Article

Permeable reactive interceptors: blocking diffuse nutrient and greenhouse gases losses in key areas of the farming landscape

期刊

JOURNAL OF AGRICULTURAL SCIENCE
卷 152, 期 -, 页码 S71-S81

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S0021859613000944

关键词

-

资金

  1. Department of Agriculture, Food and the Marine under the Research Stimulus Fund [RSF 07 525]
  2. French Embassy (Dublin)

向作者/读者索取更多资源

Engineered remediation technologies such as denitrifying bioreactors target single contaminants along a nutrient transfer continuum. However, mixed contaminant discharges to a water body are more common from agricultural systems. Indeed, evidence presented herein indicates that pollution swapping within denitrifying bioreactor systems adds to such deleterious discharges. The present paper proposes a more holistic approach to contaminant remediation on farms, moving from the use of 'denitrifying bioreactors' to the concept of a 'permeable reactive interceptor' (PRI). Besides management changes, a PRI should contain additional remediation cells for specific contaminants in the form of solutes, particles or gases. Balance equations and case studies representing different geographic areas are presented and used to create weighting factors. Results showed that national legislation with respect to water and gaseous emissions will inform the eventual PRI design. As it will be expensive to monitor a system continuously in a holistic manner, it is suggested that developments in the field of molecular microbial ecology are essential to provide further insight in terms of element dynamics and the environmental controls on biotransformation and retention processes within PRIs. In turn, microbial and molecular fingerprinting could be used as an in-situ cost-effective tool to assess nutrient and gas balances during the operational phases of a PRI.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据