4.7 Article

Possible Use of the Carbohydrates Present in Tomato Pomace and in Byproducts of the Supercritical Carbon Dioxide Lycopene Extraction Process as Biomass for Bioethanol Production

期刊

JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY
卷 61, 期 15, 页码 3683-3692

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jf4005059

关键词

agri-food industry wastes; alcoholic fermentation; cell wall polysaccharides; Solanum lycopersicurn L.; supercritical fluids; tomato pomace

资金

  1. MIUR [MIUR 7885/55 PAR2001]
  2. Department of Energy [DE-FG09-93ER-20097]

向作者/读者索取更多资源

This study provides information about the carbohydrate present in tomato pomace (skins, seeds, and vascular tissues) as well as in the byproducts of the lycopene supercritical carbon dioxide extraction (SC-CO2) such as tomato serum and exhausted matrix and reports their conversion into bioethanol. The pomace, constituting approximately 4% of the tomato fruit fresh weight, and the SC-CO2-exhausted matrix were enzyme saccharified with 0.1% Driselase leading to sugar yields of similar to 383 and similar to 301 mg/g dw, respectively. Aliquots of the hydrolysates and of the serum (80% tomato sauce fw) were fermented by Saccharomyces cerevisiae. The bioethanol produced from each waste was usually >50% of the calculated theoretical amount, with the exception of the exhausted matrix hydolysate, where a sugar concentration >52.8 g/L inhibited the fermentation process. Furthermore, no differences in the chemical solubility of cell wall polysaccharides were evidenced between the SC-CO2-lycopene extracted and unextracted matrices. The deduced glycosyl linkage composition and the calculated amount of cell wall polysaccharides remained similar in both matrices, indicating that the SC-CO2 extraction technology does not affect their structure. Therefore, tomato wastes may well be considered as potential alternatives and low-cost feedstock for bioethanol production.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据