4.7 Article

Interaction between Amylose and Tea Polyphenols Modulates the Postprandial Glycemic Response to High-Amylose Maize Starch

期刊

JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY
卷 61, 期 36, 页码 8608-8615

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jf402821r

关键词

high-amylose maize starch; tea polyphenols; slowly digestible starch; postprandial glycemic response; self-assembly of amylose

资金

  1. National Natural Science Foundation of China [21076095]
  2. Ministry of Science and Technology of People's Republic of China Infrastructure Program [2012BAD33B05]

向作者/读者索取更多资源

High-amylose maize starch (HAM) is a common source material to make resistant starch with its high content of amylose (>70%). In the current investigation, the self-assembly of amylose in the presence of bioactive tea polyphenols (TPLs) and resulting slow digestion property of starch were explored. The experimental results using a mouse model showed a slow digestion property can be achieved with an extended and moderate glycemic response to HAM starch cocooked with TPLs. Further studies using a dilute aqueous amylose solution (0.1%, w/v) revealed an increased hydrodynamic radius of amylose molecules, indicating that TPLs could bridge them together, leading to increased molecular sizes. On the other hand, the bound TPLs interrupted the normal process of amylose recrystallizaiton evidenced by a decreased viscosity and storage modulus (G') of HAM (5%) gel, a rough surface of the cross-section of HAM film, and decreased short-range orders examined by Fourier transform infrared spectral analysis. Single-step degradation curves in the thermal gravimetric profile demonstrated the existence of a self-assembled amylose-TPL complex, which is mainly formed through hydrogen bonding interaction according to the results of iodine binding and X-ray powder diffraction analysis. Collectively, the amylose-TPL complexation influences the normal self-assembling process of amylose, leading to a low-ordered crystalline structure, which is the basis for TPLs' function in modulating the digestion property of HAM starch to produce a slowly digestible starch material that is beneficial to postprandial glycemic control and related health effects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据