4.7 Article

Structural Changes and Dynamic Rheological Properties of Sarcoplasmic Proteins Subjected to pH-Shift Method

期刊

JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY
卷 58, 期 7, 页码 4241-4249

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jf903219u

关键词

Sarcoplasmic proteins; striped catfish; FT-Raman spectroscopy; pH-shifting; dynamic rheological properties

向作者/读者索取更多资源

Structural changes and dynamic rheological properties of sarcoplasmic proteins from striped catfish (Pangasius hypophthalmus) treated by various pH-shift processes were investigated. Isoelectric precipitation of acid-extracted sarcoplasmic proteins led to the lowest solubility in water. Sarcoplasmic proteins were unfolded after extremely acidic and alkaline extraction, exposing tryptophan and aliphatic residues. The a-helical structure was converted to beta-sheet following acidic extraction, whereas alkaline treatment did not disturb the alpha-helical structure of sarcoplasmic proteins. Disulfide formation, hydrogen bonding via tyrosine residues, and hydrophobic interactions occurred under extreme pH extraction. Acidic extraction induced denaturation and aggregation of sarcoplasmic proteins to a greater extent than did alkaline treatment. Hydrophobic interactions via aliphatic and aromatic residues were formed during isoelectric precipitation. Sarcoplasmic proteins were partially refolded after isoelectric precipitation followed by neutralization. Sarcoplasmic proteins prepared from an alkaline pH-shift process readily aggregated to form a gel at 45.10 degrees C, whereas higher thermal denaturation temperatures (>80 degrees C) and gel points (similar to 78 degrees C) were observed in acid-treated sarcoplasmic proteins. The pH condition used for extraction, precipitation, and neutralization greatly affected structural changes of sarcoplasmic proteins, leading to different thermal and dynamic rheological properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据