4.7 Article

Chemical Structures of Corn Stover and Its Residue after Dilute Acid Prehydrolysis and Enzymatic Hydrolysis: Insight into Factors Limiting Enzymatic Hydrolysis

期刊

JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY
卷 58, 期 22, 页码 11680-11687

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jf102514r

关键词

Corn stover; NMR; bioethanol; biomass; lignin; cellulose

资金

  1. National Science Foundation [EAR-0843996, CBET-0853950]

向作者/读者索取更多资源

Advanced solid-state NMR techniques and wet chemical analyses were applied to investigate untreated corn stover (UCS) and its residues after dilute acid prehydrolysis (DAP) and enzymatic hydrolysis (RES) to provide evidence for the limitations to the effectiveness of enzyme hydrolysis. Advanced solid-state NMR spectral-editing techniques as well as (1)H-(13)C two-dimensional heteronuclear correlation NMR (2D HETCOR) were employed. Our results indicated that dilute acid prehydrolysis selectively removed amorphous carbohydrates, increased aromatic CH/other protonated -C=C- and enriched alkyl CH and CH(2) components. Cinnamic acids were increased, and proteinaceous materials and N-containing degradation or condensation compounds were absorbed or coprecipitated in RES. 2D HETCOR experiments indicated a close association between lignin and the residual carbohydrates. Ketones/aldehydes were not detected in the DAP, in contrast to a report in which an appreciable amount of ketones/aldehydes was generated from the acid pretreatment of a purified cellulose in the literature. This suggested that acid pretreatment may modify the structure of purified cellulose more than biomass and that biomass may be a better substrate than model biopolymers and compounds for assessing structural changes that occur with industrial processing. On the basis of NMR and wet chemical analyses, we found the following factors could cause the limitations to the effectiveness of enzymatic hydrolysis: (1) chemical modification of carbohydrates limited the biologically degradable carbohydrates available; (2) cinnamic acids in the residue accumulated; (3) accessibility was potentially limited due to the close association of carbohydrates with lignin; and (4) proteinaceous materials and N-containing degradation or condensation compounds were absorbed or coprecipitated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据