4.7 Article

Mechanism and Related Kinetics of 5-Methyltetrahydrofolic Acid Degradation during Combined High Hydrostatic Pressure-Thermal Treatments

期刊

JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY
卷 57, 期 15, 页码 6803-6814

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jf900832g

关键词

Nutrient degradation; folate; multiresponse modeling; high pressure; temperature; kinetics

向作者/读者索取更多资源

The mechanism and kinetics of the degradation of 5-methyltetrahydrofolic acid during thermal and combined high pressure-thermal treatments in an aqueous solution were investigated. In a first approach the degradation was described by a first-order kinetic model using single-response modeling, and the combined pressure-temperature dependence of the resulting degradation rate constants was empirically described. To obtain a mechanistic insight, degradation products were purified and identified by LC-MS and NMR. Quantification of an s-triazine derivative, 5-methyldihydrofolic acid, and p-aminobenzoyl-L-glutamate as predominant degradation products at atmospheric pressure resulted in elucidation and kinetic characterization of the folate degradation mechanism by Bayesian multiresponse modeling. The postulated mechanism was evaluated at elevated hydrostatic pressure. On the basis of the pressure and temperature dependence of the reaction rates, some degradation reactions were either accelerated or decelerated upon application of pressure. Multiresponse kinetics can be a valuable tool to assess the impact of high hydrostatic pressure and other processing techniques on nutrients, and incorporating mechanistic insights can advance the current kinetic approach for process optimization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据