4.7 Article

Quantitative reconstruction of the nonvolatile sensometabolome of a red wine

期刊

JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY
卷 56, 期 19, 页码 9190-9199

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jf801742w

关键词

taste; red wine; astringency; bitterness; mouthfulness; taste reconstruction; sensometabolome

向作者/读者索取更多资源

The first comprehensive quantitative determination of 82 putative taste-active metabolites and mineral salts, the ranking of these compounds in their sensory impact based on dose-over-threshold (DOT) factors, followed by the confirmation of their sensory relevance by taste reconstruction and omission experiments enabled the decoding of the nonvolatile sensometabolome of a red wine. For the first time, the bitterness of the red wine could be demonstrated to be induced by subthreshold concentrations of phenolic acid ethyl esters and flavan-3-ols. Whereas the velvety astringent onset was imparted by three flavon-3-ol glucosides and dihydroflavon-3-ol rhamnosides, the puckering astringent offset was caused by a polymeric fraction exhibiting molecular masses above >5 kDa and was found to be amplified by the organic acids. The perceived sourness was imparted by L-tartaric acid, D-galacturonic acid, acetic acid, succinic acid, L-malic acid, and L-lactic acid and was slightly suppressed by the chlorides of potassium, magnesium, and ammonium, respectively. In addition, D-fructose and glycerol as well as subthreshold concentrations of glucose, 1,2-propandiol, and myoinositol were found to be responsible for the sweetness, whereas the mouthfulness and body of the red wine were induced only by glycerol, 1,2-propandiol, and myo-inositol.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据