4.2 Article

Geochemistry of carbonate cements in Cretaceous sandstones, southeast Benue Trough, Nigeria: Implications for geochemical evolution of formation waters

期刊

JOURNAL OF AFRICAN EARTH SCIENCES
卷 57, 期 3, 页码 213-226

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jafrearsci.2009.09.003

关键词

Major; Trace elements; Oxygen isotope; Carbonate cements

资金

  1. Moni Pulo Petroleum Development (Nig) Ltd.

向作者/读者索取更多资源

Carbonate cements including calcite, siderite, dolomite/ankerite were formed throughout the diagenetic history of the Asu River Group, Eze-Aku Group and Campano-Maastrichtain proto-Niger Delta sequences were analyzed for their major and trace element (Fe, Mn, Mg, Ca and Sr) and isotopic compositions. The earliest, ferroan carbonate cement has the following mean major and trace element concentration: Fe - 0.11 wt.%; Mn - 0.43 wt.%; Mg - 2.16 wt.%; Sr - 1050 ppm. The late ferroan has the following mean compositions: Fe - 0.48 wt.%; Mn - 0.22 wt.%; Mg - 0.25 wt.%; Sr - 1010 ppm. Earliest Fe-calcites, formed prior to significant compaction of the sediments, are relatively enriched in Mg (up to 4.12 mol.%), and have 6180 values between -4.45% and -6.898% PDB close to the ideal original Cretaceous marine pore waters. Late calcites are relatively Fe-calcites (up to 4.2 mol.%). The earliest ferroan calcite occurs in both the Albian Asu River Group and Eze-Aku Group while late ferroan occurs in the three lithostratigraphic units studied. These geochemical variations appear to have resulted principally to reflect changes in pore water chemistry during diagenesis. The high value of Sr in cements is most likely due to interaction between pore waters and Sr-rich clay and possibly feldspar in the three lithostratigraphic units studied. Pore water Fe(2+) concentration was probably controlled by diagenetic alterations involving Fe-bearing minerals (e.g. pyrite precipitation). The low delta(18)O value of some calcite cements (-11.62 parts per thousand, -12.66 parts per thousand, -14.31 parts per thousand PDB) suggests that an influx of meteoric water may have occurred in the Turonian-Coniacian, although the low value could also result from an abnormal geothermal gradient associated with tectonic activity in the trough. The elemental and isotopic composition of these cements varies as a function of the time of precipitation. Crown Copyright (C) 2009 Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据