4.6 Article

Airflow and nanoparticle deposition in rat nose under various breathing and sniffing conditions-A computational evaluation of the unsteady and turbulent effect

期刊

JOURNAL OF AEROSOL SCIENCE
卷 41, 期 11, 页码 1030-1043

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jaerosci.2010.06.005

关键词

Computational fluid dynamics; Rat nasal cavity; Nanoparticle deposition; Olfactory region; Cycling breathing

资金

  1. NIH
  2. Monell Chemical Senses Center

向作者/读者索取更多资源

Accurate prediction of nanoparticle (1-100 nm) deposition in the rat nasal cavity is important for assessing the toxicological impact of inhaled nanoparticles as well as for potential therapeutic applications. A quasi-steady assumption has been widely adopted in the past investigations on this topic, yet the validity of such simplification under various breathing and sniffing conditions has not been carefully examined. In this study, both steady and unsteady computational fluid dynamics (CFD) simulations were conducted in a published rat nasal model under various physiologically realistic breathing and sniffing flow rates. The transient airflow structures, nanoparticle transport and deposition patterns in the whole nasal cavity and the olfactory region were investigated and compared with steady state simulation of equivalent flow rate. The results showed that (1) the quasi-steady flow assumption for cyclic flow was valid for over 70% of the cycle period during all simulated breathing and sniffing conditions in the rat nasal cavity, or the unsteady effect was only significant during the transition between the respiratory phases; (2) yet the quasi-steady assumption for nanoparticle transport was not valid, except in the vicinity of peak respiration. In general, the total deposition efficiency of nanoparticle during cyclic breathing would be lower than that of steady state due to the unsteady effect on particle transport and deposition, and further decreased with the increase of particle size, sniffing frequency, and flow rate. In the contrary, previous study indicated that for micro-scale particles (0.5-4 mu m), the unsteady effect would increase deposition efficiencies in rat nasal cavity. Combined, these results suggest that the quasi-steady assumption of nasal particle transport during cycling breathing should be used with caution for an accurate assessment of the toxicological and therapeutic impact of particle inhalation. Empirical equations and effective steady state approximation derived in this study are thus valuable to estimate such unsteady effects in future applications. Finally, through large eddy simulations, turbulent effects were found to be negligible for all breathing/sniff conditions in rat nasal cavity. (C) 2010 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据