4.6 Article

Classification of highly monodisperse nanoparticles of NIST-traceable sizes by TDMA and control of deposition spot size on a surface by electrophoresis

期刊

JOURNAL OF AEROSOL SCIENCE
卷 39, 期 6, 页码 537-548

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jaerosci.2008.03.001

关键词

TDMA; monodisperse particle generation; reduction of multiply charged particles; particle deposition by electrophoresis; NIST-traceable particle size

向作者/读者索取更多资源

It is required to characterize surface inspection tools using particles of known material and size, with controllable deposition spot size for adjusting deposited-particle number density on a mask or a wafer surface. Not all the materials commonly seen in semiconductor manufacturing are available in the form of monodisperse particles. Thus for some materials, it is inevitable to use polydisperse particles for characterizing the surface inspection tools. The differential mobility analyzer (DMA) is widely used to generate monodisperse aerosol. The DMA, however, can classify unwanted larger particles of multiple charges along with singly charged particles of a target size, due to the same electrical mobility. The present study proposed a Tandem-DMA (TDMA) system comprising two DMAs and two radioactive sources to reduce the fraction of multiply charged particles. Using this TDMA system, SiO2 nanoparticles with approximately 98% size-uniformity were fractionated from a broad size distribution. All DMAs utilized in this study were calibrated using Standard Reference Materials (SRM 1963) issued by the National Institute of standards and Technology (NIST), in order to produce particles with NIST-traceable sizes. An analytic equation was derived to predict the deposition spot size on a surface in case of the electrostatic particle sampling, and agreed well with experimental and numerical data. (c) 2008 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据