4.1 Article

Effect of antioxidants on the genotoxicity of phenethyl isothiocyanate

期刊

MUTAGENESIS
卷 30, 期 3, 页码 421-430

出版社

OXFORD UNIV PRESS
DOI: 10.1093/mutage/gev003

关键词

-

资金

  1. National Research Initiative of the US Department of Agriculture (USDA) Cooperative State Research, Education and Extension Service [2006-35200-16578]
  2. North Carolina Agricultural Research Service [NC02282]

向作者/读者索取更多资源

Isothiocyanates are plant-derived compounds that may be beneficial in the prevention of certain chronic diseases. Yet, by stimulating the production of reactive oxygen species (ROS), isothiocyanates can be genotoxic. Whether antioxidants influence isothiocyanate-induced genotoxicity is unclear, but this situation was clarified appreciably herein. In HCT116 cells, phenethyl isothiocyanate (PEITC) increased ROS production, which was inhibited by N-acetylcysteine (NAC) and deferoxamine (DFO) but not by ascorbic acid (ASC) and trolox (TRX) that were found to be more potent radical scavengers. Surprisingly, ASC and TRX each intensified the DNA damage that was caused by PEITC, but neither ASC nor TRX by themselves caused any DNA damage. In contrast, NAC and DFO each not only attenuated PEITC-induced DNA damage but also attenuated the antioxidant-intensified, PEITC-induced DNA damage. To determine if the DNA damage could be related to possible changes in the major antioxidant defence system, glutathione (GSH) was investigated. PEITC lowered GSH levels, which was prevented by NAC, whereas ASC, TRX and DFO neither inhibited nor enhanced the GSH-lowering effect of PEITC. The GSH synthesis inhibitor, buthionine sulphoxime, intensified PEITC-induced DNA damage, although by itself buthionine sulphoxime did not directly cause DNA damage. The principal findings suggest that ASC and TRX make PEITC more genotoxic, which might be exploited in killing cancer cells as one approach in killing cancer cells is to extensively damage their DNA so as to initiate apoptosis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据