4.1 Article

Identification of genotoxic compounds using isogenic DNA repair deficient DT40 cell lines on a quantitative high throughput screening platform

期刊

MUTAGENESIS
卷 31, 期 1, 页码 69-81

出版社

OXFORD UNIV PRESS
DOI: 10.1093/mutage/gev055

关键词

-

资金

  1. Kyoto University Foundation
  2. JSPS Core-to-Core Program (Advanced Research Networks)
  3. interagency agreement IAG from the National Institute of Environmental Health Sciences/Division of the National Toxicology Program [NTR 12003]
  4. [24.5986]

向作者/读者索取更多资源

DNA repair pathways play a critical role in maintaining cellular homeostasis by repairing DNA damage induced by endogenous processes and xenobiotics, including environmental chemicals. Induction of DNA damage may lead to genomic instability, disruption of cellular homeostasis and potentially tumours. Isogenic chicken DT40 B-lymphocyte cell lines deficient in DNA repair pathways can be used to identify genotoxic compounds and aid in characterising the nature of the induced DNA damage. As part of the US Tox21 program, we previously optimised several different DT40 isogenic clones on a high-throughput screening platform and confirmed the utility of this approach for detecting genotoxicants by measuring differential cytotoxicity in wild-type and DNA repair-deficient clones following chemical exposure. In the study reported here, we screened the Tox21 10K compound library against two isogenic DNA repair-deficient DT40 cell lines (KU70(-/-)/RAD54(-/-) and REV3(-/-)) and the wild-type cell line using a cell viability assay that measures intracellular adenosine triphosphate levels. KU70 and RAD54 are genes associated with DNA double-strand break repair processes, and REV3 is associated with translesion DNA synthesis pathways. Active compounds identified in the primary screening included many well-known genotoxicants (e.g. adriamycin, melphalan) and several compounds previously untested for genotoxicity. A subset of compounds was further evaluated by assessing their ability to induce micronuclei and phosphorylated H2AX. Using this comprehensive approach, three compounds with previously undefined genotoxicity-2-oxiranemethanamine, AD-67 and tetraphenylolethane glycidyl ether-were identified as genotoxic. These results demonstrate the utility of this approach for identifying and prioritising compounds that may damage DNA.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据