4.1 Article

Femtosecond laser writing of subwave one-dimensional quasiperiodic nanostructures on a titanium surface

期刊

JETP LETTERS
卷 90, 期 2, 页码 107-110

出版社

MAIK NAUKA/INTERPERIODICA/SPRINGER
DOI: 10.1134/S0021364009140057

关键词

-

向作者/读者索取更多资源

One-dimensional quasiperiodic structures whose period is much smaller than the wavelength of exciting radiation have been obtained on a titanium surface under the multipulse action of linearly polarized femtosecond laser radiation with various surface energy densities. As the radiation energy density increases, the one-dimensional surface nanorelief oriented perpendicularly to the radiation polarization evolves from quasiperiodic ablation nanogrooves to regular lattices with subwave periods (100-400 nm). In contrast to the preceding works for various metals, the period of lattices for titanium decreases with increasing energy density. The formation of the indicated surface nanostructures is explained by the interference of the electric fields of incident laser radiation and a surface electromagnetic wave excited by this radiation, because the length of the surface electromagnetic wave for titanium with significant interband absorption decreases with an increase in the electron excitation of the material.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据