4.7 Article

Radio interferometric gain calibration as a complex optimization problem

期刊

出版社

OXFORD UNIV PRESS
DOI: 10.1093/mnras/stv418

关键词

instrumentation: interferometers; methods: analytical; methods: numerical; techniques: interferometric

资金

  1. South African Research Chairs Initiative of the Department of Science and Technology
  2. National Research Foundation

向作者/读者索取更多资源

Recent developments in optimization theory have extended some traditional algorithms for least-squares optimization of real-valued functions (Gauss-Newton, Levenberg-Marquardt, etc.) into the domain of complex functions of a complex variable. This employs a formalism called the Wirtinger derivative, and derives a full-complex Jacobian counterpart to the conventional real Jacobian. We apply these developments to the problem of radio interferometric gain calibration, and show how the general complex Jacobian formalism, when combined with conventional optimization approaches, yields a whole new family of calibration algorithms, including those for the polarized and direction-dependent gain regime. We further extend the Wirtinger calculus to an operator-based matrix calculus for describing the polarized calibration regime. Using approximate matrix inversion results in computationally efficient implementations; we show that some recently proposed calibration algorithms such as STEFCAL and peeling can be understood as special cases of this, and place them in the context of the general formalism. Finally, we present an implementation and some applied results of COHJONES, another specialized direction-dependent calibration algorithm derived from the formalism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据