4.7 Article

The rapid decay phase of the afterglow as the signature of the Blandford-Znajek mechanism

期刊

出版社

OXFORD UNIV PRESS
DOI: 10.1093/mnras/stv2558

关键词

black hole physics; magnetic fields; gamma-ray burst: general

资金

  1. General Secretariat for Research and Technology of Greece
  2. European Social Fund

向作者/读者索取更多资源

Gamma-ray bursts (GRBs) are believed to be powered by the electromagnetic extraction of spin energy from a black hole endowed with a magnetic field supported by electric currents in a surrounding disc (Blandford & Znajek). A generic feature of this mechanism is that, under certain fairly general assumptions, the energy loss rate decays exponentially. In this work, we are looking precisely for such exponential decay in the light curves of long-duration GRBs observed with the X-ray telescope (XRT) instrument on the Swift satellite. We found out that almost 30 per cent of XRT light curves show such behaviour before they reach the afterglow plateau. According to Blandford & Znajek, the duration of the burst depends on the magnetic flux accumulated on the event horizon. This allows us to estimate the surface magnetic field of a possible progenitor. Our estimations are consistent with magnetic fields observed in Wolf-Rayet stars.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据