4.7 Article

Chemodynamical evolution of tidal dwarf galaxies - II. The long-term evolution and influence of a tidal field

期刊

出版社

OXFORD UNIV PRESS
DOI: 10.1093/mnras/stu2629

关键词

methods: numerical; ISM: abundances; galaxies: dwarf; galaxies: evolution; galaxies: ISM

资金

  1. Vienna Scientific Cluster (VSC1) [70128]
  2. European Research Council under the European Union [278594]

向作者/读者索取更多资源

In a series of papers, we present detailed chemodynamical simulations of tidal dwarf galaxies (TDGs). After the first paper, where we focused on the very early evolution, we present in this work simulations on the long-term evolution of TDGs, ranging from their formation to an age of 3 Gyr. Dark-matter-free TDGs may constitute a significant component of the dwarf galaxy population. However it remains to be demonstrated that TDGs can survive their formation phase given stellar feedback processes, the time variable tidal field of the post-encounter host galaxy, and its dark matter halo and ram pressure wind from the gaseous halo of the host. For robust results the maximally damaging feedback by a fully populated invariant stellar initial mass function in each star cluster is assumed, such that fractions of massive stars contribute during phases of low star formation rates (SFRs). The model galaxies are studied in terms of their star formation history, chemical enrichment, and rotational curves. All models evolve into a self-regulated long-term equilibrium star formation phase lasting for the full simulation time, whereby the TDGs become significantly more compact and sustain significantly higher SFRs through compressive tides than the isolated model. None of the models is disrupted despite the unphysical extreme feedback, and none of the rotation curves achieves the high values observed in real TDGs, despite non-virial gas accretion phases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据