4.3 Article Proceedings Paper

First Principles Calculations of Defect Formation in In-Free Photovoltaic Semiconductors Cu2ZnSnS4 and Cu2ZnSnSe4

期刊

出版社

IOP PUBLISHING LTD
DOI: 10.1143/JJAP.50.04DP07

关键词

-

资金

  1. Incorporated Administrative Agency New Energy and Industrial Technology Development Organization (NEDO) under the Ministry of Economy, Trade and Industry (METI)
  2. Japan Ministry of Education, Culture, Sports, Science and Technology

向作者/读者索取更多资源

To quantitatively evaluate the formation energies of Cu, Zn, Sn, and S vacancies in kesterite-type Cu2ZnSnS4 (CZTS), first-principles pseudopotential calculations using plane-wave basis functions were performed. The formation energies of neutral Cu, Zn, Sn, and S vacancies were calculated as a function of the atomic chemical potentials of constituent elements. We compared the vacancy formation in the In-free photovoltaic semiconductor CZTS with those of Cu2ZnSnSe4 (CZTSe) and CuInSe2 (CIS). The obtained results were as follows. (1) Under the Cu-poor and Zn-rich condition, the formation energy of the Cu vacancy was generally smaller than those of the Zn, Sn and S vacancies in CZTS, as is the case for CZTSe. (2) The formation energies of Cu, Zn, and Sn vacancies in CZTS were larger than those in CZTSe. On the other hand, the formation energy of the S vacancy is smaller than that of the Se vacancy in CZTSe. (3) Under the Cu-poor and Zn-rich condition, the formation energies of the Cu vacancy in CZTS and CZTSe are much larger than that in CIS. These results indicate that in kesterite-type CZTS and CZTSe, the Cu vacancy is easily formed under Cu-poor, Zn-rich, and S(Se)-rich condition, but it is more difficult than that in CIS. (C) 2011 The Japan Society of Applied Physics

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据