4.7 Article

A geometric stochastic approach based on marked point processes for road mark detection from high resolution aerial images

期刊

出版社

ELSEVIER
DOI: 10.1016/j.isprsjprs.2009.05.005

关键词

Road modelling; Aerial imagery; Road marks; Marked point process; RJMCMC

向作者/读者索取更多资源

Road detection has been a topic of great interest in the photogrammetric and remote sensing communities since the end of the 70s. Many approaches dealing with various sensor resolutions, the nature of the scene or the wished accuracy of the extracted objects have been presented. This topic remains challenging today as the need for accurate and up-to-date data is becoming more and more important. Based on this context, we will study in this paper the road network from a particular point of view, focusing on road marks, and in particular dashed lines. Indeed, they are very useful clues, for evidence of a road, but also for tasks of a higher level. For instance, they can be used to enhance quality and to improve road databases. It is also possible to delineate the different circulation lanes, their width and functionality (speed limit, special lanes for buses or bicycles). In this paper, we propose a new robust and accurate top-down approach for dashed line detection based on stochastic geometry. Our approach is automatic in the sense that no intervention from a human operator is necessary to initialise the algorithm or to track errors during the process. The core of our approach relies on defining geometric, radiometric and relational models for dashed lines objects. The model also has to deal with the interactions between the different objects making up a line, meaning that it introduces external knowledge taken from specifications. Our strategy is based on a stochastic method, and in particular marked point processes. Our goal is to find the objects configuration minimising an energy function made-up of a data attachment term measuring the consistency of the image with respect to the objects and a regularising term managing the relationship between neighbouring objects. To sample the energy function, we use Green algorithm's; coupled with a simulated annealing to find its minimum. Results from aerial images at various resolutions are presented showing that our approach is relevant and accurate as it can handle the most frequent layouts of dashed lines. Some issues, for instance, such as the relative weighting of both terms of the energy are also discussed in the conclusion. (C) 2009 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据