4.8 Article

Nutrient requirements for growth of the extreme oligotroph 'Candidatus Pelagibacter ubique' HTCC1062 on a defined medium

期刊

ISME JOURNAL
卷 7, 期 3, 页码 592-602

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/ismej.2012.122

关键词

alanine; genome streamlining; glycolate; phytoplankton

资金

  1. Gordon and Betty Moore Foundation's Marine Microbiology Initiative

向作者/读者索取更多资源

Chemoheterotrophic marine bacteria of the SAR11 clade are Earth's most abundant organisms. Following the first cultivation of a SAR11 bacterium, 'Candidatus Pelagibacter ubique' strain HTCC1062 (Ca. P. ubique) in 2002, unusual nutritional requirements were identified for reduced sulfur compounds and glycine or serine. These requirements were linked to genome streamlining resulting from selection for efficient resource utilization in nutrient-limited ocean habitats. Here we report the first successful cultivation of Ca. P. ubique on a defined artificial seawater medium (AMS1), and an additional requirement for pyruvate or pyruvate precursors. Optimal growth was observed with the collective addition of inorganic macro-and micronutrients, vitamins, methionine, glycine and pyruvate. Methionine served as the sole sulfur source but methionine and glycine were not sufficient to support growth. Optimal cell yields were obtained when the stoichiometry between glycine and pyruvate was 1: 4, and incomplete cell division was observed in cultures starved for pyruvate. Glucose and oxaloacetate could fully replace pyruvate, but not acetate, taurine or a variety of tricarboxylic acid cycle intermediates. Moreover, both glycine betaine and serine could substitute for glycine. Interestingly, glycolate partially restored growth in the absence of glycine. We propose that this is the result of the use of glycolate, a product of phytoplankton metabolism, as both a carbon source for respiration and as a precursor to glycine. These findings are important because they provide support for the hypothesis that some micro-organisms are challenging to cultivate because of unusual nutrient requirements caused by streamlining selection and gene loss. Our findings also illustrate unusual metabolic rearrangements that adapt these cells to extreme oligotrophy, and underscore the challenge of reconstructing metabolism from genome sequences in organisms that have non-canonical metabolic pathways. The ISME Journal (2013) 7, 592-602; doi:10.1038/ismej.2012.122; published online 25 October 2012

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据