4.8 Article

Temperature-responsive sensing regulates biocontrol factor expression in Pseudomonas fluorescens CHA0

期刊

ISME JOURNAL
卷 3, 期 8, 页码 955-965

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/ismej.2009.42

关键词

biocontrol; GacS/GacA; Pseudomonas; RetS; small RNAs; temperature control

资金

  1. Swiss National Foundation [3100A0-100180]
  2. University of Lausanne

向作者/读者索取更多资源

In the plant-beneficial, root-colonizing strain Pseudomonas fluorescens CHA0, the Gac/Rsm signal transduction pathway positively regulates the synthesis of biocontrol factors (mostly antifungal secondary metabolites) and contributes to oxidative stress response via the stress sigma factor RpoS. The backbone of this pathway consists of the GacS/GacA two-component system, which activates the expression of three small regulatory RNAs (RsmX, RsmY, RsmZ) and thereby counters translational repression exerted by the RsmA and RsmE proteins on target mRNAs encoding biocontrol factors. We found that the expression of typical biocontrol factors, that is, antibiotic compounds and hydrogen cyanide (involving the phlA and hcnA genes), was significantly lower at 35 degrees C than at 30 degrees C. The expression of the rpoS gene was affected in parallel. This temperature control depended on RetS, a sensor kinase acting as an antagonist of the GacS/GacA system. An additional sensor kinase, LadS, which activated the GacS/GacA system, apparently did not contribute to thermosensitivity. Mutations in gacS or gacA were epistatic to (that is, they overruled) mutations in retS or ladS for expression of the small RNAs RsmXYZ. These data are consistent with a model according to which RetS-GacS and LadS-GacS interactions shape the output of the Gac/Rsm pathway and the environmental temperature influences the RetS-GacS interaction in P. fluorescens CHA0. The ISME Journal (2009) 3, 955-965; doi: 10.1038/ismej.2009.42; published online 7 May 2009

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据