4.8 Article

Bacteria associated with iron seeps in a sulfur-rich, neutral pH, freshwater ecosystem

期刊

ISME JOURNAL
卷 2, 期 12, 页码 1231-1242

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/ismej.2008.75

关键词

bacterial community composition; DMS degradation; iron bacteria; nitrate reduction; sulfur bacteria

向作者/读者索取更多资源

The freshwater nature reserve De Bruuk is an iron- and sulfur-rich minerotrophic peatland containing many iron seeps and forms a suitable habitat for iron and sulfur cycle bacteria. Analysis of 16S rRNA gene-based clone libraries showed a striking correlation of the bacterial population of samples from this freshwater ecosystem with the processes of iron reduction (genus Geobacter), iron oxidation (genera Leptothrix and Gallionella) and sulfur oxidation (genus Sulfuricurvum). Results from fluorescence in situ hybridization analyses with a probe specific for the beta-1 subgroup of Proteobacteria, to which the genera Leptothrix and Gallionella belong, and newly developed probes specific for the genera Geobacter and Sulfuricurvum, supported the clone library data. Molecular data suggested members of the epsilonproteobacterial genus Sulfuricurvum as contributors to the oxidation of reduced sulfur compounds in the iron seeps of De Bruuk. In an evaluation of anaerobic dimethyl sulfide (DMS)-degrading activity of sediment, incubations with the electron acceptors sulfate, ferric iron and nitrate were performed. The fastest conversion of DMS was observed with nitrate. Further, a DMS-oxidizing, nitrate-reducing enrichment culture was established with sediment material from De Bruuk. This culture was dominated by dimorphic, prosthecate bacteria, and the 16S rRNA gene sequence obtained from this enrichment was closely affiliated with Hyphomicrobium facile, which indicates that the Hyphomicrobium species are capable of both aerobic and nitrate-driven DMS degradation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据