4.4 Review

Hydrogen Embrittlement Properties of Stainless and Low Alloy Steels in High Pressure Gaseous Hydrogen Environment

期刊

ISIJ INTERNATIONAL
卷 52, 期 2, 页码 234-239

出版社

IRON STEEL INST JAPAN KEIDANREN KAIKAN
DOI: 10.2355/isijinternational.52.234

关键词

hydrogen environment embrittlement; hydrogen gas; SSRT; fatigue; austenitic stainless steel; low alloy steel

向作者/读者索取更多资源

Recent research on Hydrogen Environment Embrittlement (HEE) susceptibility of stainless and low alloy steels in highly pressurized gaseous hydrogen environments was reviewed from the viewpoint of tensile properties, hydrogen absorption and fatigue properties. HEE susceptibility evaluated by Slow Strain Rate Test (SSRT) in high pressure hydrogen environments strongly depended on steel chemical compositions. Austenitic stainless steels such as type 316L or iron-based superalloy as A286 showed sufficient resistance to HEE, while stainless steels with low levels of alloying elements such as type 304L showed a remarkable ductility loss in high pressure gaseous hydrogen due to martensitic transformation. Martensitic stainless or low alloy steels also showed a remarkable ductility loss in gaseous hydrogen. Relationship between HEE susceptibility and an amount of hydrogen absorption was investigated. HEE susceptibility and hydrogen embrittlement under cathodic charging in aqueous solution showed the same dependence on the amount of hydrogen absorption, which implies HEE occurs by hydrogen absorption from external gaseous hydrogen environments. Fatigue properties in high pressure gaseous hydrogen environments were evaluated by means of internal or external pressurization tests. Austenitic stainless steels such as type 316L showed little decrease in fatigue life by hydrogen, while metastable stainless steel as type 304 or precipitation hardened superalloy as A286 showed degradation in fatigue life by hydrogen gas. Low alloy steel also showed a decrease in fatigue life in hydrogen, while high strength low alloy steel with much Mo and V showed longer fatigue life than conventional steel.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据