4.4 Article

Numerical Investigation of the Transient Multiphase Flow in an Ironmaking Blast Furnace

期刊

ISIJ INTERNATIONAL
卷 50, 期 4, 页码 515-523

出版社

IRON STEEL INST JAPAN KEIDANREN KAIKAN
DOI: 10.2355/isijinternational.50.515

关键词

multiphase flow; discrete particle simulation; computational fluid dynamics; blast furnace; cohesive zone

资金

  1. BlueScope Steel
  2. Australian Research Council (ARC)

向作者/读者索取更多资源

Discrete particle simulation (DPS) has been applied to multiphase flow modelling in an ironmaking blast furnace (BF), including burden distribution at the top, gas-solid flow in the BF shaft and raceway, and liquid solid flow in the hearth. In this work, the approach is further extended to take into account the transient features of gas and particle flow coupled with liquid tapping operation. In the simulation, two types of particles of coke and ore with different physical properties are considered, together with different shapes of the cohesive zone and the shrinkage of size of ore particles in the cohesive zone to present ore reduction. The simulated results show that the flow of both solid and gas phases varies spatially and temporally, particularly in the cohesive zone. Gas flow is strongly affected by the layered structure of ore and coke particles in the cohesive zone. A coke-free zone can form in the hearth, and the boundary profile between the coke-free zone and the coke bed depends on the amount of liquid accumulated in the hearth, gas and solid flow rates in the raceway, and coke consumption in different regions at the interface of liquid and the coke bed. The results show that the complicated transient multiphase-flow in a BF can be captured by the present approach which may be extended to account for heat transfer and chemical reaction in the future.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据