4.4 Article

Prediction of Circulation Flow Rate in the RH Degasser Using Discrete Phase Particle Modeling

期刊

ISIJ INTERNATIONAL
卷 49, 期 4, 页码 495-504

出版社

IRON STEEL INST JAPAN KEIDANREN KAIKAN
DOI: 10.2355/isijinternational.49.495

关键词

circulation flow rate; multi leg RH; discrete particle modeling

向作者/读者索取更多资源

Conservation equations for mass and momentum with a two equation k-epsilon model are solved for the continuous phase along with a discrete phase particle modeling (representing gas bubbles) in the RH degasser to predict the circulation flow rate of water in a scaled down model and then the numerical solution has been extended to the real plant case for the prediction of steel circulation flow rate in the actual RH vessel. The prediction of the circulation flow rate of water from the present numerical solution matches reasonably well with that of the experimental observation, taking into account various uncertainties those have been imbedded in the numerical model. RH operation for multi up legs and single down leg for a water model shows that the circulation flow rate falls with the number of up legs and there is an optimum number of down legs for which the circulation flow rate is the maximum for the case of a single up leg. For the actual RH operation in plant it was seen that the circulation flow rate increases with the increase in snorkel diameter and snorkel immersion depth (SID). However, it is apparent that there is existence of optimum SID for maximum circulation flow rate. For different down leg immersion depth the circulation flow rate in the RH depends heavily on the up leg immersion depth. The actual RH operation of the plant for the multi up leg and down leg cases was found to be exactly similar in nature to that of the water model cases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据