4.5 Article

Electrochemical stability of optimized Si/C composites anode for lithium-ion batteries

期刊

IONICS
卷 21, 期 2, 页码 579-585

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s11581-014-1331-9

关键词

Li-ion batteries; Anodes; Electrochemical characterizations; Charging/discharging

资金

  1. National Natural Science Foundation of China [50671012]

向作者/读者索取更多资源

We present a simple versatile strategy to synthesized the Si/C composites as anode material for lithium batteries through the pyrolysis of starch as the precursor. Different ratios of Si to starch are used to optimize the compound and the electrochemical properties of the composites. The structure and morphology of the Si/C composites are investigated systematically by thermogravimetric and differential thermal analysis, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The electrochemical properties of Si/C composites electrode are investigated by constant current charge-discharge, cyclic voltammetry, and electrochemical impedance spectra techniques. As an anode material for lithium-ion batteries, the Si/(48 wt%)C composites exhibit the best electrochemical properties with the capacity retention of 91.3 % after 50 cycles with a current density of 100 mA g(-1). The improvement could be attributed to the introduction of carbon in the Si/(48 wt%)C composites, which can provide a rapid lithium transport pathway, reduce the cell impedance, and stabilize the electrode structure during the lithium alloying-dealloying process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据