4.7 Article

Tomato plant cell death induced by inhibition of HSP90 is alleviated by Tomato yellow leaf curl virus infection

期刊

MOLECULAR PLANT PATHOLOGY
卷 17, 期 2, 页码 247-260

出版社

WILEY
DOI: 10.1111/mpp.12275

关键词

cell death; geminivirus; heat stress transcription factor; HSP90

资金

  1. US Agency for International Development, Middle East Research and Cooperation (MERC) program [GEG-G-00-02-00003-00]

向作者/读者索取更多资源

To ensure a successful long-term infection cycle, begomoviruses must restrain their destructive effect on host cells and prevent drastic plant responses, at least in the early stages of infection. The monopartite begomovirus Tomato yellow leaf curl virus (TYLCV) does not induce a hypersensitive response and cell death on whitefly-mediated infection of virus-susceptible tomato plants until diseased tomatoes become senescent. The way in which begomoviruses evade plant defences and interfere with cell death pathways is still poorly understood. We show that the chaperone HSP90 (heat shock protein 90) and its co-chaperone SGT1 (suppressor of the G2 allele of Skp1) are involved in the establishment of TYLCV infection. Inactivation of HSP90, as well as silencing of the Hsp90 and Sgt1 genes, leads to the accumulation of damaged ubiquitinated proteins and to a cell death phenotype. These effects are relieved under TYLCV infection. HSP90-dependent inactivation of 26S proteasome degradation and the transcriptional activation of the heat shock transcription factors HsfA2 and HsfB1 and of the downstream genes Hsp17 and Apx1/2 are suppressed in TYLCV-infected tomatoes. Following suppression of the plant stress response, TYLCV can replicate and accumulate in a permissive environment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据