4.7 Article

Osmotic Stress Modulates the Balance between Exocytosis and Clathrin-Mediated Endocytosis in Arabidopsis thaliana

期刊

MOLECULAR PLANT
卷 8, 期 8, 页码 1175-1187

出版社

CELL PRESS
DOI: 10.1016/j.molp.2015.03.007

关键词

osmotic stress; protein trafficking; clathrin-mediated endocytosis; auxin

资金

  1. European Research Council [ERC-2011-StG-20101109-PSDP]
  2. European Social Fund [CZ.1.07/2.3.00/20.0043]
  3. Czech Science Foundation GACR [GA13-40637S]
  4. project Postdoc I. [CZ.1.07/2.3.00/30.0009]
  5. European Social Fund
  6. state budget of the Czech Republic

向作者/读者索取更多资源

The sessile life style of plants creates the need to deal with an often adverse environment, in which water availability can change on a daily basis, challenging the cellular physiology and integrity. Changes in osmotic conditions disrupt the equilibrium of the plasma membrane: hypoosmotic conditions increase and hyperosmotic environment decrease the cell volume. Here, we show that short-term extracellular osmotic treatments are closely followed by a shift in the balance between endocytosis and exocytosis in root meristem cells. Acute hyperosmotic treatments (ionic and nonionic) enhance clathrin-mediated endocytosis simultaneously attenuating exocytosis, whereas hypoosmotic treatments have the opposite effects. In addition to clathrin recruitment to the plasma membrane, components of early endocytic trafficking are essential during hyperosmotic stress responses. Consequently, growth of seedlings defective in elements of clathrin or early endocytic machinery is more sensitive to hyperosmotic treatments. We also found that the endocytotic response to a change of osmotic status in the environment is dominant over the presumably evolutionary more recent regulatory effect of plant hormones, such as auxin. These results imply that osmotic perturbation influences the balance between endocytosis and exocytosis acting through clathrin-mediated endocytosis. We propose that tension on the plasma membrane determines the addition or removal of membranes at the cell surface, thus preserving cell integrity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据