4.5 Article

Restricted brain penetration of the tyrosine kinase inhibitor erlotinib due to the drug transporters P-gp and BCRP

期刊

INVESTIGATIONAL NEW DRUGS
卷 30, 期 2, 页码 443-449

出版社

SPRINGER
DOI: 10.1007/s10637-010-9569-1

关键词

Blood-brain barrier; Brain tumor; Erlotinib; ABC transporters

向作者/读者索取更多资源

Purpose Erlotinib (TarcevaA (R), OSI-774) is a small molecule inhibitor of the epidermal growth factor receptor (EGFR) tyrosine kinase. As high-grade gliomas frequently show amplification, overexpression and/or mutation of EGFR, this drug has been tested in several clinical trials with glioblastoma patients, but unfortunately, with little success. As erlotinib is a known substrate of P-glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP) we have investigated the effect of these ABC-transporters on the brain penetration of erlotinib. Study design Erlotinib (50 mg/kg) was given by i.p. administration to wild-type (WT), Mdr1ab(-/-) (single P-gp knockout), Bcrp1(-/-) (single Bcrp1 knockout) and Mdr1ab(-/-)Bcrp1(-/-) (compound P-gp and Bcrp1 knockout) mice. Drug levels in plasma and tissues were determined by reversed-phase high-performance liquid chromatography. Results Relative to Mdr1ab(-/-)Bcrp1(-/-) mice that are deficient for both drug transporters, the area under the concentration time curve in brain tissue (AUC)(brain) of erlotinib decreased significantly by 1.6-fold in Mdr1ab(-/-) mice where Bcrp1 is present (49.6 A +/- 3.95 versus 31.1 A +/- 1.7, mu g/g*h; P < 0.01). In Bcrp1(-/-) mice, were P-gp is present, a more pronounced 3.8-fold decrease to 13.0 A +/- 0.70, mu g/g*h (P < 0.01) was observed, which is close to the 4.5-fold decrease in the AUC(brain) of erlotinib found in WT mice where both drug transporters are present (11.0 A +/- 1.35, P < 0.01). The plasma clearance of erlotinib was similar in mice deficient for P-gp and/or Bcrp1 compared with wild-type mice. In all other tissues the differences between the genotypes were negligible. Conclusions Both P-gp and Bcrp1 reduce the brain penetration of erlotinib. Although P-gp appears to be the most effective factor limiting the brain penetration of erlotinib, the highest brain accumulation was observed when Bcrp1 was also absent. Strategies to inhibit P-gp/BCRP in patients to improve delivery of (novel molecular-targeted) substrate agents, such as erlotinib, to the brain may be required for treatment of intracranial malignancies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据