4.4 Article

Molecular g-tensors from analytical response theory and quasi-degenerate perturbation theory in the framework of complete active space self-consistent field method

期刊

MOLECULAR PHYSICS
卷 113, 期 13-14, 页码 1750-1767

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/00268976.2015.1012128

关键词

g-tensor; multi-reference; spin-orbit coupling; relativistic quantum chemistry; electron paramagnetic resonance

资金

  1. Ministry of Education, Culture, Sports, Science and Technology-Japan [25288013]
  2. Grants-in-Aid for Scientific Research [25288013] Funding Source: KAKEN

向作者/读者索取更多资源

The molecular g-tensor is an important spectroscopic parameter provided by electron para magnetic resonance (EPR) measurement and often needs to be interpreted using computational methods. Here, we present two new implementations based on the first-order and second-order perturbation theories to calculate the g-tensors within the complete-active space self-consistent field (CASSCF) wave function model. In the first-order method, the quasi-degenerate perturbation theory (QDPT) is employed for constructing relativistic CASSCF states perturbed with the spin-orbit coupling operator, which is described effectively in one-electron form with the flexible nuclear screening spin-orbit approximation introduced recently by us. The second-order method is a newly reported approach built upon the linear response theory which accounts for the perturbation with respect to external magnetic field. It is implemented with the coupled-perturbed CASSCF (CP-CASSCF) approach, which provides an equivalent of untruncated sum-over-states expansion. The comparison of the performances between the first-order and second-order methods is shown for various molecules containing light to heavy elements, highlighting their relative strength and weakness. The formulations of QDPT and CP-CASSCF approaches as well as the derivation of the second-order Douglas-Kroll-Hess picture change of Zeeman operators are given in detail.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据