4.1 Article

Iterative thresholding compressed sensing MRI based on contourlet transform

期刊

INVERSE PROBLEMS IN SCIENCE AND ENGINEERING
卷 18, 期 6, 页码 737-758

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/17415977.2010.492509

关键词

compressed sensing; MRI; data acquisition; geometric image transform; sparsity

资金

  1. NNSF of China [10774125, 10875101, 10605019]
  2. Chinese Scholarship Council

向作者/读者索取更多资源

Reducing the acquisition time is important for clinical magnetic resonance imaging (MRI). Compressed sensing has recently emerged as a theoretical foundation for the reconstruction of magnetic resonance images from undersampled k-space measurements, assuming those images are sparse in a certain transform domain. However, most real-world signals are compressible rather than exactly sparse. For example, the commonly used two-dimensional wavelet for compressed sensing MRI (CS-MRI) does not sparsely represent curves and edges. In this article, we introduce a geometric image transform, the contourlet, to overcome this shortage. In addition, the improved redundancy provided by the contourlet can successfully suppress the pseudo-Gibbs phenomenon, a tiresome artefact produced by undersampling of k-space, around the singularities of images. For numerical calculation, a simple but effective iterative thresholding algorithm is employed to solve l1 norm optimization for CS-MRI. Considering the recovered information and image features, we introduce three objective criteria, which are the peak signal-to-noise ratio (PSNR), mutual information and transferred edge information, to evaluate the performance of different image transforms. Simulation results demonstrate that contourlet-based CS-MRI can better reconstruct the curves and edges than traditional wavelet-based methods, especially at low k-space sampling rate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据