4.5 Article

Periprosthetic strain magnitude-dependent upregulation of type I collagen synthesis in human osteoblasts through an ERK1/2 pathway

期刊

INTERNATIONAL ORTHOPAEDICS
卷 33, 期 5, 页码 1455-1460

出版社

SPRINGER
DOI: 10.1007/s00264-009-0735-z

关键词

-

资金

  1. National Natural Science Foundation of China [30470455]
  2. Shanghai Rising-star Program [07QA14062]

向作者/读者索取更多资源

Human osteoblasts sense mechanical stimulation and synthesise type I collagen in periprosthetic osseointegration following total hip arthroplasty. However, the regulation of type I collagen synthesis by periprosthetic strain is unclear because the cellular-level strain magnitude remains unknown to date. Fortunately, the tissue-level strain in implanted femurs is measurable. According to the mechanism of strain amplification, the tissue-level strain was amplified 20 times to stretch human osteoblasts in this study. Elongation of 0.8-3.2% enhanced the mRNA level of type I collagen, whereas the release of procollagen type I C propeptide only increased at 2.4% and 3.2% elongation. Type I collagen expression increased with the activation of ERK1/2 phosphorylation in a strain-magnitude-dependent manner, whereas JNK and P38 were unaffected. The responses were completely inhibited by blocking the ERK1/2 pathway with U0126. The results indicate that type I collagen synthesis in human osteoblasts depends on the level of periprosthetic strain and ERK1/2 activation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据