4.7 Review

Laser additive manufacturing of metallic components: materials, processes and mechanisms

期刊

INTERNATIONAL MATERIALS REVIEWS
卷 57, 期 3, 页码 133-164

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1179/1743280411Y.0000000014

关键词

Additive manufacturing; Rapid prototyping; Rapid manufacturing; Direct metal laser sintering; Selective laser melting; Direct metal deposition; Laser engineered net shaping; Metals; Alloys; Metal matrix composites; Microstructure; Mechanical property; Review

资金

  1. Alexander von Humboldt Foundation Germany
  2. National Natural Science Foundation of China [51054001, 51104090]
  3. Aeronautical Science Foundation of China [2010ZE52053]
  4. Natural Science Foundation of Jiangsu Province [BK2009374]
  5. NUAA [NS2010156]

向作者/读者索取更多资源

Unlike conventional materials removal methods, additive manufacturing (AM) is based on a novel materials incremental manufacturing philosophy. Additive manufacturing implies layer by layer shaping and consolidation of powder feedstock to arbitrary configurations, normally using a computer controlled laser. The current development focus of AM is to produce complex shaped functional metallic components, including metals, alloys and metal matrix composites (MMCs), to meet demanding requirements from aerospace, defence, automotive and biomedical industries. Laser sintering (LS), laser melting (LM) and laser metal deposition (LMD) are presently regarded as the three most versatile AM processes. Laser based AM processes generally have a complex non-equilibrium physical and chemical metallurgical nature, which is material and process dependent. The influence of material characteristics and processing conditions on metallurgical mechanisms and resultant microstructural and mechanical properties of AM processed components needs to be clarified. The present review initially defines LS/LM/LMD processes and operative consolidation mechanisms for metallic components. Powder materials used for AM, in the categories of pure metal powder, prealloyed powder and multicomponent metals/alloys/MMCs powder, and associated densification mechanisms during AM are addressed. An in depth review is then presented of material and process aspects of AM, including physical aspects of materials for AM and microstructural and mechanical properties of AM processed components. The overall objective is to establish a relationship between material, process, and metallurgical mechanism for laser based AM of metallic components.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据